
Abstract. Conical intersections of two potential-energy
surfaces have the obvious, but important, e�ect of
facilitating radiationless decay of the excited state. They
also have a less obvious, but potentially more general,
impact on single and multisurface dynamics through the
geometric phase e�ect. The geometric phase e�ect, the
subject of this perspective, requires that the adiabatic
electronic wavefunction, real-valued and continuous
with respect to nuclear coordinates, change sign when
transported along a closed loop ± a pseudorotation path
± surrounding a single point of conical intersection. This
was discovered by Longuet-Higgins in 1958 and carefully
described in papers between 1958 and 1963. In the title
article Longuet-Higgins demonstrates, in the context of a
theoretical exposition of the dynamic Jahn±Teller (and
Renner±Teller) e�ects, the connection between conical
intersections and the geometric phase e�ect, and estab-
lishes the consequences of the geometric phase e�ect in
nuclear dynamics. Since that time appreciation of the
importance of the geometric phase e�ect has increased
enormously aided in no small measure by Berry's 1984
work that established the role of the geometric phase
e�ect in general adiabatic processes. That work spurred
research in areas well outside the realm of molecular
spectroscopy/dynamics. However, recent work demon-
strating the prevalence of conical intersections of two
Born±Oppenheimer states of the same symmetry suggests
that conical intersections and the geometric phase e�ect
will be issues of signi®cant importance in molecular/
chemical dynamics in the next century.
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1 The `origin' of the geometric phase effect

This perspective is concerned with the geometric phase
e�ect, a property of a real-valued adiabatic wavefunc-

tion that results from a conical intersection involving the
potential-energy surface of the state in question. It has
profound and fundamental e�ects (modifying the basic
SchroÈ dinger equation) on nuclear motion. The geomet-
ric phase e�ect is known to be broadly applicable [1] as a
result of Berry's highly in¯uential 1984 work [2]; yet, the
discovery of the geometric phase e�ect and the descrip-
tion of its potential impact, by Longuet-Higgins [3±5]
25 years earlier, are ®rmly rooted in the theoretical
treatment of electronically nonadiabatic processes using
the extension of the Born±Oppenheimer approximation,
due to Born and Huang [6]. Interestingly although
conical intersections were themselves known from the
pioneering work of von Neumann and Wigner in 1929
[7] it was not until approximately 30 years later, long
after the 1937 work of Jahn and Teller [8] on the e�ect
bearing their names, that Longuet-Higgins [3±5] estab-
lished the existence of the geometric phase e�ect in Jahn-
Teller systems. The featured article, one of several
papers Longuet-Higgins published between during the
period 1958±1963 dealing with the geometric phase
e�ect, presents a careful description of the geometric
phase e�ect and its implications. Hence the choice of the
article for this perspective.

1.1 Relation to the theory of nonadiabatic processes

Within the Born±Oppenheimer approximation the faster
moving electrons create a potential-energy surface on
which the nuclei move. This approximation forms the
basis of our understanding of chemical bonding and
molecular dynamics, see, for example, the article by Tully
in this issue. Despite its central position in chemical
theory, breakdowns of the Born±Oppenheimer approxi-
mation, electronically nonadiabatic processes, are ubiq-
uitous.Nonadiabatic processes include charge-transfer [9]
and electronic-quenching reactions, and many photo-
chemical reactions are nonadiabatic [10], including some
of nature's most basic processes: the initial radiationless
energy transport step in photosynthesis [11] and the
cis-trans isomerization that initiates the process of vision.
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Most treatments of nonadiabatic processes do not
abandon the Born±Oppenheimer idea of nuclear motion
on potential-energy surfaces, instead in a nonadiabatic
process the nuclei move on more than one Born±Op-
penheimer potential-energy surface. Nonadiabatic tran-
sitions between potential-energy surfaces occur when the
nuclei encounter a region where two potential-energy
surfaces are in close proximity. Regions where the
potential-energy surfaces intersect linearly, conical
intersections, are of preeminent importance.

1.2 Conical intersections

A conical intersection of two potential-energy surfaces is
depicted in Fig. 1 [12]. From this ®gure it is seen that for
the excited state the conical intersection provides an
e�cient pathway for internal conversion: radiationless
decay to the ground electronic state [10]. The e�ect of a
conical intersection on ground-state dynamics is more
subtle but is of enormous fundamental and practical
importance. It might appear that for nuclear motion
beginning on the ground-state potential-energy surface
the conical intersection is of limited importance since it
represents a mountain peak and therefore is compara-
tively inaccessible. In fact, for that reason nuclear
motion on the ground-state potential-energy surface is
not usually expected to sample the conical intersection
directly; however the conical intersection can e�ect
nuclear motion indirectly through the geometric phase
e�ect [13]. In this case the particle need only traverse a
closed path around the conical intersection. Proximity to
the conical intersection is not the issue.

1.3 Geometric phase e�ect

The geometric phase e�ect, the signature property of a
conical intersection, requires that the adiabatic electronic
wavefunction (chosen to be real-valued and continuous
with respect to nuclear coordinates) change sign when

transported along a closed loop ± a pseudorotation path
[14] ± surrounding (only) a single point of conical
intersection. The pseudorotation path for an X3 mole-
cule was presented in the featured work. Figure 2
presents a one-third of the pseudorotation path for H3,
following Ref. [15]. In the featured work Longuet-
Higgins explains the mixing of the two wavefunctions,
that are degenerate at the conical intersection point,
along the pseudorotation path that leads to the sign
change. This result can be understood using a simple
Jahn±Teller model Hamiltonian. (see Sect. 3). Degener-
acy is essential here. A nondegenerate wavefunction
cannot exhibit the geometric phase e�ect since it must
remain normalized, i.e., the leading coe�cient in its
perturbation expansion about a point R must always be
large.

1.4 Implications: dynamic Jahn±Teller e�ect

Longuet-Higgins pointed out that the sign change in
the electronic wavefunctions has profound implications
for the associated nuclear SchroÈ dinger equation. To see
this note that since the electronic wavefunction changes
sign along a circular path around the conical intersec-
tion, the vibrational wavefunction must compensate by
also changing sign so that the overall wave function
returns to itself after traversing the loop. Let h denote
the angle that transports nuclear con®guration around
the loop. Then a basis function for the nuclear
wavefunction of the form Um�h� � exp imh is unaccept-
able since Um�h� 2p� � Um�h�. Rather functions of
the form Um�1=2�h� � exp i�m� 1=2�h are required since
Um�1=2�h� 2p� � ÿUm�1=2�h�. This is the origin of the
well-known half-integer quantization in the dynamic
Jahn±Teller e�ect [4].

2 Subsequent work

2.1 Molecular Aharonov±Bohm e�ect

The idea in the preceding section was subsequently used
to consider to the single adiabatic state problem [16],
where it is known as the molecular Aharonov±Bohm
(MAB) e�ect [17] owing to its analogy with a magnetic
e�ect discussed by Aharonov and Bohm [18]. In MAB
theory the electronic wavefunction is altered to remove
the sign change. It is multiplied by a phase factor so that
it returns to itself after traversing a closed loop. The
e�ect of this modi®cation is to introduce into the nuclear
SchroÈ dinger equation a vector potential, analogous to
the magnetic vector A in the standard semiclassical
treatment of radiation [19]. This term must be included
whether or not the system actually encounters the
conical intersection. Thus through the geometric phase
e�ect a conical intersection can exhibit a highly non local
in¯uence on nuclear dynamics.

Recently this idea has received much attention in the
chemical physics community, brought about by accurate
measurements [20±22] of rotational±vibrational energy
transfer in collisions of H with H2. Kuppermann [23±26]Fig. 1. A conical intersection of two potential-energy surfaces
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has argued that it is precisely the geometric phase e�ect
that needs to be included in the adiabatic description of
the reaction H�H2�v � 1; j� ! H�H2�v � 0; j0� to
obtain agreement with experiment.

2.2 The quest for the geometric phase e�ect
in optical spectroscopy

Berry's 1984 work led to manifestations of the geometric
phase e�ect being detected outside the area of optical
spectroscopy discussed by Longuet-Higgins. Observa-
tion of the geometric phase e�ect in molecular spectros-
copy has proved surprisingly di�cult. One reason for
this di�culty is suggested in Sect. 3.

In 1986 the ®rst apparent observation of a half-integer
pseudorotation quantum number was reported [27]. The
B band of Na3 (interpreted as the 32E0 ÿX2E0 transition)
was observed through resonant two-photon ionization
spectroscopy. A ®t to the spectral data was obtained with
a linear Jahn±Teller model, indicating the existence of
the geometric phase e�ect; however, less than 2 years
later ab initio calculations called this result into ques-
tion, indicating that the transition in question was to the
lowest, nondegenerate component, of a pseudo Jahn±
Teller triple of electronic states [28]. Recent investiga-
tions at rotational resolution using resonant two-photon
ionization and optical±optical double resonance spec-
troscopy [29, 30] have con®rmed the absence of a geo-
metric phase e�ect in this state. In fact it was not until

Fig. 2. Symmetry-unique port-
ion of the pseudorotation path
for H3, outer plates, around the
D3h conical intersection point,
center plates, as originally dis-
cussed by Longuet-Higgins [4].
Each point on the path is the
constructed from �cos h Qy �
sin h Qx�. Present drawing from
Ref. [15]. The third internal
coordinate, not shown, is the
D3h-preserving ring breathing
mode, Qs
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1998 that the ®rst unambiguous demonstration of the
geometric phase e�ect in Na3 was reported on the basis
of an analysis of the A2E00 ! X2E0 emission [31].

In the above-mentioned Na3 studies the observation
of the geometric phase e�ect was indirect, i.e., it is in-
ferred by ®tting the observed spectra to a detailed
spectroscopic Hamiltonian that evinces the geometric
phase e�ect. Preferable would be a direct observation,
i.e., the observation of a `spectral signature' of the geo-
metric phase e�ect; however, this remains an elusive
goal. It has been suggested the geometric phase e�ect
could be ``directly'' observed using short-duration, co-
herent light pulses. In the experiment a nondegenerate
ground state would be pumped to a degenerate excited
state exhibiting the geometric phase e�ect and allowed to
evolve until a second coherent pulse causes interference
half a cycle later. The resulting interference would be
evident in the ¯uorescence emission from the excited
state [32±35]. This theoretical proposal of Cina has yet to
be observed experimentally.

3 Current issues/mathematical formulation

Although the discovery of geometric phase e�ect is over
40 years old, it and related issues remain areas of active
research. Below we illustrate in more precise terms the
nature of the geometric phase e�ect as described above,
and brie¯y outline some current issues in this ®eld.

We begin by describing the origin of the geometric
phase e�ect using the quadratic Jahn±Teller Hamilto-
nian of Longuet-Higgins [4]:

He�Q� � m�Q�I� K�2��Q�rz � K�2��Q�rx �1�
Here vectors (matrices) are written in boldface (bold
italic), the Q � �Qx; Qy ;Qs� are the three standard
Jahn±Teller coordinates, see Fig. 2, rw are the Pauli
matrices, K�l��Q� �Pl

i�1 ki�Q�; K�l��Q� �Pl
i�1 ki�Q�,

k1�Q�=g1�Qs� � Qx � q cos h

k1�Q�=g1�Qs� � Qy � q sin h
�2a�

k2�Q�=g2�Qs� � Q2
x ÿ Q2

y � q2 cos 2h

k2�Q�=g2�Qs� � ÿ2QxQy � ÿq2 sin 2h
�2b�

and m�Q� is arbitrary in the present context. g1�Qs� and
g2�Qs� are the Qs-dependent parameters of the model.
Note from Eq. (2a, b) that He has a conical intersection
for Qx � Qy � 0 �q � 0�.

He has eigenvalues [36]:

E��q; h;Qs�
� m�Q� � q g1�Qs�j j
�

��������������������������������������������������������������������������������
1ÿ q=qc�Qs�� �2�2q=qc�Qs� cos 3h� 1� �

q
:

�3�
Its eigenfunctions, the adiabatic electronic states, are

W��r;Q�;Wÿ�r;Q�� � � ��w1�r;Q�; w2�r;Q��u�H�Q��y
�4a�

where r � �r1; . . . ; rN e� are the coordinates of the N e

electrons, w1 and w2 are the basis for He, and u[H(Q)]
is given by

u�H�Q�� � cosH sinH
ÿ sinH cosH

� �
�4b�

tan 2H�q; h;Qs� � sin h� �q=qc� sin 2h
cos h� �q=qc� cos 2h

: �4c�

Here qc�Qs� � jg1�Qs�=g2�Qs�j, and the upper (lower)
signs in the radical in Eq. (3) and in Eq. (4c) are used if
g1g2 is > �<�0.

From Eq. (4c) for small q; H � h=2. In this case
after a closed loop has been traversed, h ! h� 2p
but H ! H� p; therefore, from Eq. (4b) we see
that �W��r; q; h� 2p�; Wÿ�r; q; h� 2p�� � ÿ�W��r; q; h�;
Wÿ�r; q; h��. This is the geometric phase e�ect!

The situation is di�erent for large q for which
H � ÿh and so �W��r; q; h� 2p�; Wÿ�r; q; h� 2p�� �
��W��r; q; h�; Wÿ�r; q; h��. The reason for this change
is the existence of three more conical intersections at
q � qc [36]. These additional conical intersections com-
plicate the observation of the geometric phase e�ect. For
further discussion of this point see Ref. [37].

As noted previously the key feature of the geometric
phase e�ect is that it leads to a modi®cation of the
nuclear SchroÈ dinger equation. This modi®cation is
described below.

The total wave function for a molecule can be
expanded as

WT
k �r;R� �

XNa

I�1
~vk

I �R� ~Wa
I �r;R� ; �5�

where R � �R1; . . . ;RNnuc� are the coordinates of the
Nnuc nuclei, in a space ®xed frame, ~vk

I �R� are the nuclear
wave functions and ~Wa

I �r;R� are the adiabatic electronic
wavefunctions which satisfy the standard (Coulombic)
electronic SchroÈ dinger equation

H e�r;R� ÿ Ea
I �R�

� �
~Wa

I �r;R� � 0 �6�
with the total Hamiltonian given by HT�r;R� �PNnuc

a�1 � 1
2Ma
�pa pa � H e�r;R�.

The di�erence between Wa
I �r;R� and ~Wa

I �r;R� �
exp iAI�R�Wa

I �r;R� is crucial. As a consequence of the
geometric phase e�ect, at each R the sign of Wa

I �r;R� is
arbitrary and path-dependent. Such a function is called
double-valued, since it can be either �Wa

I �r;R�; however,
the total wave function must be single-valued and so
as noted previously the geometric phase e�ect must be
compensated for by either choosing the phase factor

exp iAI�R� such that ~Wa
I �r;R� is single-valued, or by the

phase properties of ~vk
I �R�. The only requirement on

AI�R�, sometimes referred to as the Longuet-Higgins
phase [38], is that it change sign when transported in a
closed loop around a conical intersection. The determi-
nation of AI(R) has been a topic of recent discussion [39,
40]. The second option is less frequently used since in
general, although not for the Jahn±Teller e�ect, it is
more di�cult to implement.
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Using Eq. (5) in the total SchroÈ dinger equation
�HT ÿ Ek�WT

k � 0 and taking h ~Wa
I �r;R�j the nuclear

SchroÈ dinger equation becomesXNnuc

a�1

1

2Ma
pa � AI

a

ÿ �2ÿ pa � AI
a

ÿ � � ifIIa �R�h"
ÿifIIa �R� � pa � AI

a

ÿ �i� �EI�R� ÿ Ek

i
~vk

I �R�

� ÿ
XNa

J�6�I�
exp �iAJI�R��

XNnuc

a�1

1

2Ma
kIJ
a �R� � pa � AJ

a

ÿ ���
� ifIJa �R� � ifIJa �R�: pa � AJ

a

ÿ �	�
~vk

J �R� ; �7�

where AI
a�R� � raAI�R�, AJI�R� � AJ �R� ÿ AI�R�, the

®rst derivative couplings or simply the derivative
couplings [41], fJI

a �R�, are given by

fJI
a �R� � WJ �r;R� raWI�r;R�jh ir �8�

�EI�R� � EI�R� �
XNnuc

a�1

kII
a

2Ma
�9�

and

kJI
a �R� � raWJ �r;R� �raWI�r;R�j ir



�
XNCSF

K�1
fKJ
a �R�� � fKI

a �R� : �10�

If Wa
I is chosen to be real then fIIa �R� � 0, otherwise it is

purely imaginary.
Of particular interest is the adiabatic, or MAB, limit

N a � 1 where WT
k � exp�iAI�R��Wa�r;R�~vk

I �R� and Wa is
real-valued. The nuclear SchroÈ dinger equation isXNnuc

a�1

�1
2Ma

pa � AI
a

ÿ �2h i
� EI�R� ÿ Ek

" #
~vk

I �R� � 0 : �11�

This clearly demonstrates that the e�ect of the conical
intersection is to add a vector potential, analogous to
the vector potential A in semiclassical electromagnetic
theory, to the nuclear SchroÈ dinger equation in the
adiabatic limit. Calculations based on Eq. (11) have
recently been reported [39, 42, 43].

For the Jahn±Teller problem N a � 2 is required. The
evaluation of kJI

a �R� in Eq. (7) is quite costly [44, 45]. It
is therefore convenient to approximate kJI

a �R� by the
second term in Eq. (10) with NCSF � Na. A somewhat
stronger version of this assumption is found in the fea-
tured work. In this case for real Wa

I �r;R� and assuming
AJ � AI � A, Eq. (7) becomes

Equation (12) illustrates the standard interpretation of fIJa
as coupling the two electronic states in question. It is
therefore interesting to observe the e�ect of the following
transformation to a complex electronic basis used by
Longuet-Higgins in the featured article (see alsoRef. [46]).

WT � ~W�~vÿ � ~Wÿ~v� ; �13a�
where

~W� � �1=
���
2
p
� ~Wa

I � i ~Wa
J

ÿ �
~Wÿ � �1=

���
2
p
� ~Wa

I ÿ i ~Wa
J

ÿ �
~vÿ � �1=

���
2
p
� ~vI ÿ i~vJ� � ~v� � �1=

���
2
p
� ~vI � i~vJ� � :

�13b�
Then ~v� satisfy (see also Ref. [46])

h�pa;Aa;f
IJ
a �� �Eavg

IJ �R�ÿEk Ea
I ÿEa

J

ÿ �
=2

Ea
I ÿEa

J

ÿ �
=2 h�pa;Aa;ÿfIJa �� �Eavg

IJ �R�ÿEk

 !

� ~vk
ÿ�R�

~vk
��R�

 !
� 0

0

� �
; �14a�

where �Eavg
IJ �R� � �Ea

I �R� � �Ea
J �R�

� �
=2 and

h�pa;Aa; f
IJ
a � �

XNnuc

a�1

1

2Ma

h
pa � Aa� �2ÿ pa � Aa� � �

ifJI
a �R� ÿ ifJI

a �R� � pa � Aa� �
i
:

Using the replacement ~v � v exp�ÿiA� the total wave-
function can be rewritten in terms of double-valued
functions as WT

k � W�vk
ÿ �Wÿvk

�. In terms of v�
Eq. (14a) becomesXNnuc

a�1

1

2Ma
�pa � fIJa �2 � EI�R� ÿ Ek

" #
vk
ÿ

� i Ea
I ÿ Ea

J

ÿ �
=
p
2

� �
vk
2 � 0

ÿ i Ea
I ÿ Ea

J

ÿ �
=
p
2

� �
vk
2 �

XNnuc

a�1

1

2Ma
�pa ÿ fIJa �2

"

�EJ �R� ÿ E

#
vk
ÿ � 0: �14b�

The most interesting aspect of Eq. (14a, b) is that the
derivative coupling is transferred from the o�-diagonal
term to the diagonal term and the coupling is purely of
the potential form.

Note the similarity between the term involving
�pa � fIJa �2 in Eq. (14b) and that involving �pa � AI

a�2 in
Eq. (11). Thus it is interesting to ask whether the
replacement AI

a ! fIJa is appropriate. In a sense it is, but

PNnuc

a�1
1

2Ma
pa � Aa� �2� �EI�R� ÿ Ek

PNnuc

a�1
ÿ1
2Ma

pa � Aa� � � ifIJa �R� � ifIJa �R� � pa � Aa� �� �
PNnuc

a�1
ÿ1
2Ma

pa � Aa� � � ifJI
a �R� � ifJI

a �R� � pa � Aa� �� � PNnuc

a�1
1

2Ma
pa � Aa� �2� �EJ �R� ÿ Ek

0BBB@
1CCCA ~vk

I �R�
~vk

J �R�

 !

� 0

0

� �
: �12�
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ONLY when certain approximations are valid. To see

this de®ne a candidate �AI by

�AI �a;Cq�R�; fIJ � �
Z

a; Cq

fIJ �R0� � dR0 ; �15�

where Cq�R� is a circle of radius q centered at
R; �a;Cq�R�� denotes an arc of a� on Cq�R� and

fIJ � �fIJ1 ; . . . ; fIJNnuc�. Then we have the following [47]:

�AI �2p;Cq�Q�; fIJ � ���������!
q! 0

p if Q � Rx �16a�

�AI �2p;Cq�Q�; fIJ � ���������!
q! 0

0 if Q 6� Rx ; �16b�

where Rx is a point of conical intersection of states I and
J . This is the requisite property for an AI . However, it
must hold for circles of arbitrary q. For ®nite q Eq. (16a,
b) is only an approximation since fIJhas a nonvanishing
curl [48]. Within the two-state approximation,
NCSF � N a, the curl does in fact vanish [49]. Thus in this
case the identi®cation of �AI with AI is appropriate;
although, for NCSF > Na it is only an approximation [50].

One way around this dilemma is to use an approxi-
mate derivative coupling that has the same singularity as
fIJ , so that Eq. (16a, b) is satis®ed, but is explicitly the
gradient of a scalar so that its curl vanishes. The details of
such a construction ± applicable in favorable situations ±
can be found in Ref. [40].

4 The future

The geometric phase e�ect described in the title work
results from a symmetry-required conical intersection, a
comparatively rare occurrence in molecular systems.
However the recent development of e�cient algorithms
[51, 52] for locating accidental conical intersections of
two states of the same symmetry, an issue in which
Longuet-Higgins also played a seminal role [53], has
shown that conical intersections, rather than being rare
occurrences, are a common phenomenon. The absence
of point group symmetry as a prerequisite for these
intersections and the recent discovery of unexpected loci
for the seams of conical intersection [54] suggest that
in the future conical intersections in general and the
geometric phase e�ect in particular will be encountered
often and in unexpected situations.
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